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The path-integral-like expression for the gquantum propagator of discrete-time area-preserving maps is evaluated
approximately by neglecting higher than second-order terms in an expansion of the action about the classical paths. In the
resulting guasi-classical approximation for the propagator special attention is paid to the recursive nature of its amplitude
and the possible appearance of Maslov-like phases. Using a further approximation for the amplitude we arrive at explicit
expressions which clearly show the differences between the contributions of stable and unstable classical paths. An estimate
for the range of validity for the quasi-classical approximation is also given.

1. Introduction

The properties of quantum systems, which show chaotic behaviour in the classical limit, have now been
studied for more than ten years [1-6]. Of particular interest have been the remnants of classical chaos in
quantum dynamics. Systems which are intensively worked on are arca-preserving maps. They appear in
the Poincaré surface of sections of Hamiltonian flows and are easy to simulate on computers. It was
found that in the time development of the corresponding quantum model chaos is always suppressed
after a long-enough time [1]. Only in the quasi-classical regime quantum dynamics clearly shows
signatures of the difference between classically regular and irregular motion [1, 3].

Whereas classical chaos is a long-time phenomenon, the guasi-classical regime is limited to a finite
time, because Planck’s constant # is non-zero. Therefore, the quasi-classical approximation of a
classically chaotic quantum system requires a careful discussion of its range of validity.

A quasi-classical investigation of the propagator for discrete-time area-preserving maps has been
performed in the arena of phase space [2]. In this paper we are concerned with the propagator in the
configuration space for periodically kicked systems. This kind of propagator was discussed by Tabor [7]
only briefly as he was more interested in its trace. However, the propagator does contain more
information than its trace. For example, it can be used to calculate quantum-mechanical correlation
functions of classically chaotic systems [8].

QOur main goal is to present a simple derivation for the propagator within the quasi-classical limit in
such a way that it becomes practicable for numerical calculations. In this respect, we do not have a
particular system in mind but try to keep the discussion fairly general.

After describing the classical model we approximate the path-integral-like expression for the quantum
propagator by expanding the action about the classical path and neglecting deviations of higher than
second order. This is the standard path-integral approach to the WKB-approximation in quantum
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dynamics. We will explicitly perform the integration with particular attention paid to the possible
appearance of Maslov-like phases. In section 4 the connection of our result with that of Tabor [7] is
established. Within a further approximation for the amplitude of the quasi-classical propagator we find
explicit formulas for the contributions of stable and unstable classical paths having different signatures.
The validity of this approximation is tested in section 4.2 for a quartic kicking potential. We also present
some implications of the quasi-classical approximation for the spectral properties of the quasi-energy
operator. In section 5 we estimate higher-order corrections to the quasi-classical approximation. In the
conclusion we propose some applications and generalizations of the presented formalism. We also point
out the limitations of this approach which has been overlooked in the past. In appendix A we give the
exact solution for a quadratic kicking potential. In appendix B we derive for an arbitrary kicking
potential the quasi-classical approximation of the trace of the propagator and correct results of ref. [7],

2. The classical model

The discrete-time area-preserving map we are interested in is generated by the time-dependent
classical Hamiltonian

HO=£+ T V(@)s(n-1/7), (p,0) R, 750, (1)

1= —oac

which describes the free motion of a point particle with mass m > 0 on the full Euclidean line R
subjected to a time-dependent perturbation by delta-kicks of varying strength characterized by a
potential V,(q). The subscript n indicates a possible explicit time dependence of the kicking force.
Denoting the constant momentum p(r) for the time between the kick n and n+1 by p,, that is
p,=p(t) for nt <t <(n+ 1)7, and the position at time ¢ = nt by g, = g(nr), the classical equations of
motion read in phase space

4 =dy_1+(7/M)Dy_yy,  DP,=P,1—7V,(4,), (2.2)

where V,/(g) = 8V, (g)/3q. The classical motion for an initial point (p,, g,) in phase space R? is uniquely
determined via (2.2). On the other hand, eliminating the momentum variable gives the following
second-order recurrence relation for the position in configuration space:

qnj;l:zqn_qn-ml_(Tz/m)B/n’(qn)' (23)

From this equation the position g, of the particle after N kicks is uniquely determined by the initial
pair (g, q,), that is g5 = qn(4y, g,). Or vice versa, for a given initial point g, and a given end point g,
the solutions g of

ay=4qy(4f,q,) (2.4)

uniquely determine the classical “paths” which start in g, at £=0 and end in g, at £ =N7. Such a
classical path is given by the set of points {g;},_, ;. » Where a enumerates the distinct solutions of
(2.4) with g§ =g, and gy =g,

.
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The action associated with a particular classical path with number « reads

N
Sa(ando) ES(N)(‘IN#i'ﬁmla---sqix’qo) = E S.(an-d:-1)> (2.5)

n=1

where the one-kick action is defined by
8%, %) = 5= (x—x')’ = V,(x) 7. (26)

Finally, we note that closed orbits characterized by the condition g,(q,, g7) = g, are not necessarily
periodic orbits as in general py # p,. The periodic orbits are period-N fixed points in phase space, that
i8, (P @) = (Ppsn>Quon) HE L.

3. The quasi-classical approximation of the quantum propagator

The propagator or time-evolution operator U™ for the quantum version of the kicked system (2.1)
after N kicks is given by the time-ordered product

I}(N) = ETNLATN_I et ﬁlﬁl’ (3.1)
where the one-kick propagator

A

i - i p?
U, = exp(*ﬁVn(Q) T)GXP(“EWT) (32)

describes free motion for (n — 1)1 <t < nr followed by a kick at instant ¢ = nr. In the above § and p are
the usual position and momentum operators with commutation relation gp — pg = i#.

The problem is to find a more explicit expression for the product (3.1). Therefore, we turn to the
g-representation. In this representation the one-kick propagator is given as

(A0l =y 7mir e0l(i/MS(xx)], (33)

with §,(x, x") being the one-kick action (2.6). Throughout this paper the symbol ¥  denotes the principle
value of the square root, e.g. Vi = e™/4, The product (3.1) then takes a Feynman path-integral-like form

<4N|6(N)|qo> = f+:dx1---fﬁ+:de—1<xN|0N IxN—l> T '(xl x0>

= (V ﬁ )Nf_+:dx1...f_+:deW1CXp[(i/_h)S(N)(xN,...,xo)]. (3.4)

Here we have used the letters {x,} for the integration variables as they do not coincide with the solutions
{g,;} of the classical equation of motion (2.3). Only for initial and end point we have g, =x, and g, =x .
The action S¥Xxy,..., xy) is evaluated along the path {x,}, o, .

0,

-~
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The “path integral” (3.4) has been approximately calculated by Tabor [7] using the method of
stationary phase. We will follow a different but equivalent approach often used in quasi-classical
path-integral evaluations [9, 10]. Namely; we will expand the action SV (x,..., x,) about the classical
path {g2},_o 1w For this we set x, = g + &7 and £5 =0, &5 = 0. Expanding up to second order in £
and neglecting the higher-order terms gives

. .
o m o o 2 " o o 2
SN (xysee0s %) =Sa(dn,0) + 7 L (?(fn =& — V(a6 ) (3.5)
n=1
The contribution to the propagator from this path then can be put into the form
Fy exp[(i/7)S3(aw, q0)] (3.6)

where we have introduced

L B N xp[i é((z,,—z,,wl)z—gv,:'(q:) )] (3.7)

with z, = £2y/(m/2#7) . The integration is easily performed by diagonalizing the quadratic form in the
exponent {note that z,=0 and z, = 0) and using the (one-dimensional) Fresnel integral

too ) 1, fora >0,
f 4z w2 L1 . (3.8)
—w Viw Al e ™72 for A <0.

The result can be written as follows:

a _ m —ivgmw /2
Fy \/2wiﬁf|detG;:,| © : (39)

Here G is the tridiagonal (N — 1) X (N — 1) matrix defined as follows,

g -1 0 - 0
-1 dg -1 0 0

Gi=1| L di=2 (P m)V (), (3.10)
o ... 0 -1 d§j., -1
0 0 -1 dy_,

and v, is a Maslov-like index defined as the number of negative eigenvalues of Gy. Expansion along the
last row leads to the following recurrence relation for the determinant Df = det G, of Gy,

o« =d°De-D? |, n=1,2,.... (3.11)

The initial conditions are D§ = 0 and D¢ = 1. This relation also arises in the time-lattice definition of the
path-integral approach to continuous-time quantum systems, where however, the limit N — o, 7 — 0 has
to be taken such that Nt remains constant [11].
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The complete propagator in the quasi-classical approximation is obtained from (3.6) and (3.9) by
summing over all classical paths connecting g, and g, by N time steps :

A m a .
(qN|U(N) |q0> ~ E‘/m exp[(i/h)S5(aw,q0) —iv,m/2]. (3.12)

Note that for N=1 the index v, is zero. However, as N is increasing the matrix G5 may develop
negative eigenvalues. If we assume that only one of these eigenvalues changes its sign at one instant, the
index v, is identical to the number of changes in the sign of the determinant Dy during its evolution.

4. Discussion of the quasi-classical result

Before studying the properties of the determinant Dy, we first show the equivalence of our result to
that of Tabor [7]. Taking the partial derivative with respect to ¢ on both sides of the equation of motion
(2.3) we find for the expression dg,, /9g{ a recurrence formula which is identical with that of D;Y and has
the same initial conditions. Hence, we obtain for the determinant Dy = dg,/9q{. This is precisely the
discrete analogue of what has been found for continuous systems [9, 10]. Tabor’s result [7] is established
using

9283 m d , m
Tayay 7 8qy 9l T9) = ~7pE (4.1)
and reads
A i BZS"‘(q qq)
(N) — 1 cdldnos o . " .
(gn O™ lgy) = Z\/ 3| da, e | SPL/R)SE(ans g0) —ive+ 1)m/2], (4.2)

which is the well-known Van Vleck formula [3, 10]. Actually, in ref, [7] the extra phases v, have been
neglected. Also the possibility of having more than one classical path connecting g, and g, has not been
taken into account in ref. [7]. Indeed, it is expected [12] that the number of classical irregular paths,
similar to that for unstable periodic orbits [4, 5], typically increases exponentiaily with N. This is one of
the fundamental problems in the application of quasi-classical formulas like (3.12) and (4.2).

The advantage of the representation (3.12) over (4.2) is in the simple recurrence relation (3.11) of the
determinant which allows for an useful interpretation. Interpreting Q, == IDS (with a fixed and some
arbitrary length scale />0) as a position at time nr on the Euclidean line R and introducing the
corresponding momentum P, :=(Q, ., — Q,)m/7, the recurrence relation (3.11) can be put into the
form

Qn=Qn—]+(T/m)Pn~1’ Pnzpnwl_Tl/n”(q:?)Qn' (43)

This map is generated by a classical system with a quadratic kicking potential, that is, by a Hamiltonian
of the form (2.1) with perturbation £ __10%V"(¢®)8(n — t /7). The initial conditions are O, =0 and

P,=Im/7. The map (4.3} can be used to study the quasi-classical behaviour of rather general systems.
For example, for an irregular path the set {g?} can be viewed as a sequence of pseudo-random variables
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and, consequently, (4.3) as the motion of a classical system subjected to a quadratic kicking potential with
a random time dependence.

4.1. Analytical investigations

Above we have found that the determinant which appears in the denominator of the propagator is
given by Df; = (3g,y,/0a7) 4, fixea- In other words, it describes the stability of the classical path {g5},_o 1 »
under a small initial perturbation 8¢y, that is, 8g, = Dy 8¢{. Therefore, we can define a Lyapunov
exponent for the path with number « by

39’1\1
dqf

N T
= lim & In|DY|. (4.4)

Now

A path evolving in a regular region of the phase space is stable under the perturbation 8¢{ and we may
expect, ¢.g., Dy ~sin ¢, N. On the contrary, an unstable path, that is, a classical path evolving in an
irregular region of phase space, deviates exponentially under a small initial perturbation. Hence, for such
a path we have |Dg| ~ exp(A, N) with A_ > 0.

These arguments can be made more rigorous by studying the behaviour of the determinant Dy in
more detail. For this let us put A3 :=df and A} =D7/Dg_, for n = 3. Then the recurrence relation
(3.11) reads

A =di—1/4;, n=23,.... (4.5)

Its solution can be expressed in terms of a “reversed continued fraction”:

1
Ay=dy_. - 1
ic\'l—2_ 1
N-3
1
1
g — o
I (4.6)

The determinant is given by the product Dg=TI)_, A% Obviously, for large N this product is very
sensitive to fluctuations of the magnitude of the A%’s about the value 1. If the |42|’s are systematically
above the value 1, the determinant increases exponentially with N. Whereas, for more or less symmetric
fluctuations about 1 we expect the determinant to be of order unity or to increase at most like some
power of N.

This discussion suggests to split the sum in (3.12) into two parts. We classify the paths through their
Lyapunov exponents A, as follows:
Unstable paths: For these we have A_ > 0, that is

|DE| ~ exp(z\aN.), N large. (4.7)
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Stable paths: Here we have A, = 0, that is
DYl ~NM M< +w, N large. (4.8)

The sum in the quasi-classical approximation (3.12) should be divided into two parts, that is, ¥ ( ) =
Y o()+x ( ). In applying the resulting formula to particular systems one has to find all stable

stable unstable

and sunstablf: p‘:;ths connecting the initial point g, and the final point g, by N time steps 7. This problem
is in general not solvable, even numerically. However, there are indirect applications of (3.12) which are
very promising [8] (see also our remarks in section 6). The calculation of the classical action, the
determinant and the Maslov-like index is very simple. The action is obtained via the sum (2.5), the
determinant is found by iterating (3.11) and for the index v, one has to count the changes in the sign of
Dy as n runs from 1 to N.

What are the properties of the propagator in the limit of large N7 As for the unstable paths the
amplitude in (3.12) is decreasing like e 7*«"/2 it is tempting to say that for large N the stable paths are
dominating. However, in recalling our remarks made below eq. (4.2), the number of unstable classical
paths contributing is also expected to increase exponentially like e*” where A is a suitable average over
the Lyapunov exponents {A_} and is related to the metric entropy [4, 5]. Therefore, the contributions of
the unstable paths cannot be neglected in the long-time limit.

How does the determinant and the associated index v, typically look like? To answer this question
approximately, we replace all the curvatures {1/"(g%)} appearing in the recurrence relation (3.11) by an
appropriate (e.g. time) average V,/(g2) =mw?. Such an approximation may be called harmonic for
obvious reasons (see also appendix A). Within this approximation d% = 2 — w27? is independent of » and
the recurrence relations (3.11) and (4.5) can be solved exactly. Three cases have to be considered:

(2) 0 < 27? < 4: We may call such a path elliptic. The solutions read

sin No,, «_ SinNo,

N Sn(N=-1)e,’ PV g, (4.9)
where we have set sin(3¢,) == slo7l, ¢, €[0,w]. The index v, is the integer part of (N — De_ /.
The elliptic paths exist in an area where the curvature of the kicking potential V,(g) is positive and
small. '

(b) w272 < 0: Paths belonging to this class we will call hyperbolic. Here the solutions read

cosh NA h NA
A% = e pg=21 Tl (4.10)
cosh(N—1)A, cosh A,

Above we have set sinh(3A,):=1|w 7|, A,>0. For the index we obviously have v, =0. The
hyperbolic paths live in a region where ¥, (g) has negative curvature.

(¢) wlr?> 4: These paths will be called inverse hyperbolic (or hyperbolic with reflection). Their solutions
are

N sinh NXa e
AN = Di=(-1)

_ N—1 SinhNI{a
sinh (N — 14,

. = 2
sinh A,

(4.11)
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with cosh(11,) = 1lw,7l, A, > 0. The Maslov-like index is v, = N — 1. The inverse hyperbolic paths
are located in a region where the curvature of V,(g) is positive and large.

Obviously, the contributions of the hyperbolic paths belong to that of unstable paths. Here the
N-dependent parameter fla may serve for large N as an approximation to the Lyapunov exponent (4.4).
The determinant for elliptic paths, which are stable, is expressed by the rotation angle ¢,. Here the
long-time behaviour is that we have conjectured in (4.8) with M =0 for ¢ €(0,w) and M =1 for ¢ =0
or .

We would also like to emphasize the similarity of these formulas to the residues of Greene [13] for
stable and unstable periodic orbits. It is this analogy which has suggested the above terminology.

There naturally arises the question whether the harmonic approximation we have made above is a
good one or not. For this we will consider the particular example of a quartic kicking potential.

4.2. Numerical results for a quartic kicking potential

In this section we will consider the case of a quartic kicking potential

Vi(a) =q* (4.12)

as a test for the harmonic approximation. Throughout this -section we will use the units m =7 = 1. The
corresponding dynamical system has previously been studied by Berry et al. [2] in terms of the so-called
Wigner propagator. Here we consider directly the quasi-classical approximation of the propagator in the
4-representation by looking at the classical motion. A phase-space portrait of this motion is shown in fig.
1. Obviously, there are only elliptic and inverse hyperbolic paths. We will first consider the elliptic case.

For a classical path to be elliptic it has to be more or less confined to the g-strip in phase space
characterized by V,(g) = 12g% < 4, that is |g| <1/ V3 = 0.577. Indeed, from the phase-space portrait
shown in fig. 1 we see that all regular paths are inside this strip.

0.4 — .

02 |

-0.2 |

-04 s L ! . L . L

Fig. 1. The phase-space diagram for a quartic kicking potential.



G. Junker, H. Leschke / On the quasi-classical propagator of quantum maps 143

10 '. T T T T T |. T T
ol " 1
Py, Toa
5L .‘ '- " "-..- H H —
SR P, ;
AN i I H
¢ ofi i
o O ARUR AT A A
R i
i . i v
“ L N
it -
-10 . | . | : 1 . ! .
0 20 40 60 80 100

Fig. 2. The determinant D, for the period-8-orbit, The lines are drawn to guide the eye.

There is only one elliptic path where the above harmonic approximation is actually exact. This is the
fixed point at the origin (p, ¢) = (0,0) for which we expect D, = N as follows from (4.9) with ¢ = 0. This
linear increase can indeed be observed. Elliptic paths which are close to the fixed point also start out
linearly., However, after some kicks (this number depends on the distance of the path to the fixed point),
the determinant starts with regular oscillations as predicted by (4.9) but in addition the amplitude is
linearly increasing.

There is also another class of regular paths where we can expect our approximation to be good. These
are the periodic orbits. Here the curvature of the potential seen by the paths is no longer constant. It
oscillates periodically with the period of the orbit. These additional oscillations should also be seen in
the determinant (4.9) as an extra modulation. Again, this can be observed. In fig. 2 we show the
behaviour of the determinant for the period-8-orbit. Note that the amplitude remains bounded. This is
an essential property of all stable periodic orbits and gives rise to singularities in the sum over periodic
orbits [9]. For elliptic paths staying near a stable periodic orbit the determinant shows the same
oscillations but the amplitude is in addition linearly increasing.

As an inverse hyperbolic path we consider the irregular path starting in (p,, q,) = (0.310,0.000). It
leaves the region of phase space displayed in fig. 1 after about 1300 iterations. We .observe the
oscillations in the sign of the determinant as predicted by (4.11). In fig. 3 we also sec the exponential
increase in the modulus as expected from (4.7). The straight line indicates a least-square fit to the
long-time behaviour (4.7) from which one could read off the approximate Lyapunov exponent /{a.

4.3. Implications for spectral properties
The propagator does also provide information about the quasi-energy spectrum and the corresponding

eigenfunctions. For studying these quantities we assume in this section that the kicking potential does
not explicitly depend on time, that is, ¥ (g) = V(g) which gives U™ = (U,)". Furthermore, as U, is



144 G. Junker, H. Leschke / On the quasi-classical propagator of quantum maps

5

0 20 40 60 80 100

Fig. 3. log,y |D,!| for the irregular path starting in (p,q) = (0.310,0.000). The straight line is a fit to the long-time behaviour
(4.7). Its slope determines the approximate Lyapunov exponent A .

unitary we can set ﬁl =exp{ —irE /h} where the self-adjoint operator E is the so-called quasi-energy
operator. :
Let us introduce the “Fourier transform” of the causal propagator,. -

) . A | 1 - L.
G(E)Y =Y, D) eli/MNE _ — , ImE>0. 4.13)
ot explir(£ —E)/h| -1 (

From the spectral resolution of £, that is, £ = L E, 4, )4, | where the set {E,} forms the quasi-energy
spectrum and the seét {[¢4,)} the correspondmg (gcnerahzcd) eigenvectors, we find for the diagonal
elements of G(E) in the g-representation

{ql, )|2

expir(E, —E)/h| -1

<Q|G(E)|Q) E

I

(4.14)

For a continuous part of the spectrum the sum has to be replaced by an integral. The poles of
(g|G(E)|q) provide us information about the discrete part of the spectrum, whereas, their weights are
related to the corresponding eigenfunctions.

In the quasi-classical approximation (3.12) we can represent the above diagonal element as follows

(adlG(E)lg) = 2\/2,“1,‘,r 2 Y — exp[ 52(q,q) + NTE)/h — iv,w/2]. (4.15)

=1 a(N)

Here the sums cover all closed, not necessarily periodic, orbits starting in g and coming back to g after
an arbitrary number of kicks N > 1. The extra factor of two appearing in front of the sums is due to the
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time-reversal invariance of systems with V,(g) = V(g). If g belongs to a periodic orbit there is an infinite
number of terms in the sum of (4.15) as each full cycle is counted separately. For a‘stable periodic orbit
the result (4.9) of the harmonic approximation indicates that the N-sum diverges which, in turn, suggests
a discrete part in the quasi-energy spectrum. For an unstable periodic orbit (hyperbolic or inverse
hyperbolic), the sum over N converges and gives a finite enhanced contribution to the wave functions.
This may account for the observed scaring of wave functions at and near hyperbolic periodic orbits [14,
15]. To be more explicit, the contribution to {(g|G(E)|q) from an elliptic, a hyperbolic and an inverse
hyperbolic periodic orbit with period p € N reads within the harmonic approximation

2msin @, 1 )
. « kl(se , + EY/h— . 2 ’
\/jj};] JIsin kpg, | explik [(S5(q,q) +pTE)/h — v /2]}

k=

2mcosh A, & 1
\/ : « 3y — explik|S5(q.q9) + p7E]| /h},
iwhr =1 \/cosh kpA, { [ i ) ] }

\/W > ‘/l— explik[(S4(a, @) +pE)/h— (p - 1)7/2]), (4.16)

k=1 y/sinh kpA

respectively, where v, is the integer part of (p — Dg, /.

5. Higher-order corrections a

In order to find the next-order corrections in # to.the gquasi-classical propagator, we have to take two
more terms in the expansion (3.6) into account. These are

N-1

5 = -2 T Vir(ag) (&), | (5.1)
n=1 ] . . ‘

) *r N-1 @ . . '

b5t -3 L 1(an ()" | (52)

As the term 8°S® does not contribute in the first order of the perturbation theory, both corrections are of
the same order in %. The explicit calculation gives for the corrected amplitude (3.9):

. 3 N—-1
a = m —iv,m /2 ihT @ 142
Fi \/Z'rrih-rldetG,‘(’,l © 1+ ElV}. (22} (G )n
iﬁfS N-1 m o " o -1 3 -1 -1 1
+24m3 [Z_}I/ﬂ (qn)VI (q,)[Z(G )n1+3(G )nn(G )n[(G )”] . (5.3)

In the above (G™'),, denotes the matrix elements of the inverse matrix in (3.10). Due to the tridiagonal

-
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form of Gy, the diagonal elements of G~ are given by

e -1 0 - 0

-1 df -1 0 - 0
1| . N
-1 - .
(G )= FerGE
0 0 -1 d°, =1
0 ret 0 "'1 3_1
d*,, -1 0 0
-1 4%, -1 0 0
x| - - (5.4)
0 - 0 -1 d%, -1
0 o0 =1 dy,

Near the transition from an elliptic to a hyperbolic path, that is ¢ — 0 or 1, we have found in section 4.1
that |det G| ~ N. For the above diagonal elements this leads to [(G1),,| ~n(N —n)/N < ;N. Hence,
the correction due to the 8*S® term may be estimated by

AT3N3
i/h)8%8%| <
|(i/%)8%s%| 8(4m)?

Assuming that the off-diagonal clements of G~! obey the same upper bound, that is [(G™1),,| < 1N, we
can also estimate the 35 contribution:

sup |V, (g7} |- (5.5)
n

. 2 5aroN° e a2
H(i/nysse| < Wsupm (a)|". (5.6)

If the dominant term of the higher-order corrections in # is due to 3*$?, the upper bound in (5.5) has to
be much smaller than unity for the validity of the quasi-classical approximation. This leads to the
following upper bound for the number of iterations:

N < constant /4'/3. | (5.7)
On the other hand, if (5.6) is dominating we find for the upper bound of N:

N < constant /A7, (5.8)
A similar scaling occurring just before the transition from regular to irregular motion has also been
found by Fishman et al. [16]. Beyond this transition, when the contribution of the unstable paths
dominates in (3.12), a different bound

N < constant X In{1/4) | (59

can be obtained (see also refs. [3, 6]).
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6. Concluding remarks

In this article we have derived and discussed the quasi-classical propagator of area-preserving maps.
Our result obtained by expansion about classical paths is certainly the same as that obtained from the
method of stationary phase [7]. However, the present result (3.12) expressed in terms of the determinant
D¢ provides more insight into the quasi-classical behaviour. The contributions to the quasi-classical
propagator are naturally split into two parts due to stable and unstable classical paths. These contribu-
tions have been estimated by making a harmonic approximation for their amplitude. Comparison with
the exact propagator for a quadratic kicking potential which can be found in appendix A suggests that
the stable paths are responsible for a discrete part in the quasi-energy spectrum of the system. We have
also analyzed the Maslov-like indices for the paths. For hyperbolic paths they are indeed vanishing as
claimed by Tabor [7]. However, for inverse hyperbolic and elliptic paths these indices cannot be
neglected. It is well known that these phases effect the energy spectrum in the guasi-classical approxima-
tion [9, 10].

A rough estimate for the validity of the quasi-classical approximation has also been given. Near the
stochastic transition where all regular paths become irregular we have found a scaling behaviour for the
maximum number of kicks for which the present approximation is still valid. It is interesting to note that
this behaviour is similar to the one which has been found by a renormalization-group approach [16].

Another advantage of the present approach is in the simple recurrence relations (3.11) and (4.3) which
make a numerical investigation of classical chaotic systems at the quasi-classical level very easy. For
example, the so-called correlation function, i.c. the overlap of a state vector | ¥) with a state vector [P)
after N kicks,

(wlT™ ) = f_wquffmdqg(‘IfquXqN'fJ"”) lg0) (a0l ®, (6.1)

may be considered in the present approximation. A numerical evaluation of this integral for well-local-
ized initial and final wave packets is easily performed by iterating the classical map (2.2). The classical
action given in (2.5), the determinant obtained through (3.11) or (4.3) and the Maslov-like index are
by-products of this iteration. For a recent study of these correlation functions for a continuous-time
autonomous system see ref. [8]. '

We would also like to mention that the present result is only valid if the configuration space underlying
(2.1) is the full Euclidean line R. Systems with cyclic boundary conditions such as the standard map
corresponding to the kicked rotator [1] have the unit circle %! :={g|g €[0,2m)} as its configuration
space. For such maps the correct position representation of the one-kick propagator reads

O =y ooy L ewp[(i/h)S,(x, %' +2mk)]. (6.2)
k oo

Therefore, for the standard map, as discussed by Tabor [7], the quasi-classical formulas (3.12) and (4.2)
need appropriate modifications.
" Finally, we point out that the present approach can be generalized to the kicked harmonic oscillator

+ac

2
H(t) = 5= +im0%a’+ ¥ V(a)8(n—t/7), (p,q) <R (6.3)

n=—w
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Appendix A. An exact result for a quadratic kicking potential

For a quadratic (time-independent) kicking potential
V.(a) = sme’d®, (A.1)

the truncated quasi-classical expansion in (3.5) is exact. In this case the harmonic approximation
performed in section 4.1 is also exact. For the elliptic case 0 < w?7? <4, sin 3¢ = 1|w7|, the exact
guantum propagator reads

A msin ¢ . .
(anO™lgy) = ‘f Sthrlom NgT PL0/M)Salan. o) = ivm/2). (A2)

It is a well-known fact that the Van Vleck formula (4.2) gives the correct propagator for all quadratic
Lagrangians which is essentially a harmonic oscillator with time-dependent mass m(¢) and time-depen-
dent frequency w(¢) [17). Here we have the special case m(¢) =m and 0?*(t)=w?L,8(n —t/7). For
0 < w?r? < 4 the classical motion is stable and all paths are elliptic orbits. For 272> 4 all paths become
unstable (inverse hyperbolic) and there exist no bound states. The same is valid for the quadratic
repeller, that is w? < 0 (hyperbolic paths).

The classical action can also be found in closed form,

msin ¢
Saldy»aq) = 2rsin No [(a% + ad)cos No — 2qxq,] + ima’r(ad — a?). (A3)

which is that of an ordinary (that is time-independent) harmonic oscillator with frequency 2:=
(2/7)arcsin 307 and mass M := (3msin ¢)/(arcsin 2o7). Note that sin ¢ = rw(l — 27%0?)1/2. This iden-
tification, which has already been realized by Berry et al. [2], leads to the interesting relation

i ifpr MO, i .
- e~ B o - F + 25 e e ). @9

N
(>}
S

In other words, for a free system periodically kicked with a quadratic potential the product (3.1) can
indeed be expressed in closed form. For an operator approach to this product formula see ref, [18].
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Appendix B. The quasi-classical trace formula

Finally, we would like to point out that in our approach the trace of the propagator is obtained in a
straightforward way. The trace which is defined by

TrO® o [ dx (0M ) = [ “axy. [ dagCrdOylen ) - (il Dby (B.1)
may be caIcuIa_téd quasi-classically-by expanding about classical closed orbits of length N to second
order. Such paths aré characterized by the condition dx(dq, q,) = g, Note that g, =g, is no longer
fixed. By considering-the integration over this variable (using the method of stationary phase) we get the
condition p,=p,. Therefore, not all closed paths do contribute in lowest order to the trace (B.1). Only
the periodic orbits having a period being an integer fraction of N have to be considered to this order in
k. Let the number 8 enumerate all these periodic orbits which are given by the set {gf), _; . Actually,
only a fraction (identical to the period) of this set is needed to describe this orbit.

The integration above may now be performed in analogy to section 3. Accordingly, we expand about a
periodic orbit with number B to second order and perform the integration. The quasi-classical approxi-
mation for the trace (B.1) reads

.....

Tr O™ = ¥ F£ exp[(i/h) SE(N)], (B2)
- |

where SE(N):= S (g%, gf) is the classical action corresponding to the periodic orbit with number 8 and

.?—4’5 = f-:n‘c/liz?l '~-f+m% exl){l Z ((zn _zn—l)z_ gv;:’(qf) zﬁ)J ‘ (B3)

- n=1

Note that z,:=z, does not vanish in the present case, but is also an integration variable. The integration
is done using again (3.8) and yields

1 ; '
§B= e—lvﬂ'rr/Z, B4
o |det | ' (B4
where
df -1 0 0 -1
-1 df -1 0 0 5
gh=| L | di=2- Svial), (B:5)
0 0 -1 d4&_, -1
-1 0 0 -1 df,

is a generalization of the stability matrix introduced by Bountis and Helleman [19] and vg is the number
of negative eigenvalues of the matrix &f. This N X N matrix is related to the residue RZ of Greene [13]

-~
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by R% = — 1 det #£. Periodic orbits are usually classified into elliptic, hyperbolic and inverse hyperbolic
type. Their residues, see refs. [13, 19], are very similar to the expressions given in section 4.1.
The trace of the propagator reads

. 1 . .
Tr ™ = )[:3) RE exp[(i/A)SE(N) — ivgw/2]. (B-6)

While this result is of the same form as the one obtained by Tabor [7] we note two differences. First, in
ref. [7] the trace formula contains all periodic orbits whereas only those with a period being an integer
fraction of N should be considered. It is the trace of the operator G(E) defined in (4.13) which contains
all periodic orbits. Secondly, the Maslov-like phases have also been neglected by Tabor [7]. Finally, we
note that we allow for an explicit time dependence in the kicking potential V,(g). Therefore, the
time-inversion invariance of periodic orbits is broken in general.
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